home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ____HHHHQQQQRRRR((((3333FFFF)))) ____HHHHQQQQRRRR((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- HQR, SHQR - EISPACK routine. This subroutine finds the eigenvalues of
- a REAL UPPER Hessenberg matrix by the QR method.
-
-
- SSSSYYYYNNNNOOOOPPPPSSSSYYYYSSSS
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee hhhhqqqqrrrr((((nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, hhhh,,,, wwwwrrrr,,,, wwwwiiii,,,, iiiieeeerrrrrrrr))))
- iiiinnnntttteeeeggggeeeerrrr nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, iiiieeeerrrrrrrr
- ddddoooouuuubbbblllleeee pppprrrreeeecccciiiissssiiiioooonnnn hhhh((((nnnnmmmm,,,,nnnn)))),,,, wwwwrrrr((((nnnn)))),,,, wwwwiiii((((nnnn))))
-
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee sssshhhhqqqqrrrr((((nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, hhhh,,,, wwwwrrrr,,,, wwwwiiii,,,, iiiieeeerrrrrrrr))))
- iiiinnnntttteeeeggggeeeerrrr nnnnmmmm,,,, nnnn,,,, lllloooowwww,,,, iiiigggghhhh,,,, iiiieeeerrrrrrrr
- rrrreeeeaaaallll hhhh((((nnnnmmmm,,,,nnnn)))),,,, wwwwrrrr((((nnnn)))),,,, wwwwiiii((((nnnn))))
-
-
-
- DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
- On INPUT
-
- NNNNMMMM must be set to the row dimension of two-dimensional array parameters
- as declared in the calling program dimension statement.
-
- NNNN is the order of the matrix.
-
- LLLLOOOOWWWW and IGH are integers determined by the balancing subroutine BALANC.
- If BALANC has not been used, set LOW=1, IGH=N.
-
- HHHH contains the upper Hessenberg matrix. Information about the
- transformations used in the reduction to Hessenberg form by ELMHES or
- ORTHES, if performed, is stored in the remaining triangle under the
- Hessenberg matrix. On OUTPUT
-
- HHHH has been destroyed. Therefore, it must be saved before calling HQR
- if subsequent calculation and back transformation of eigenvectors is to
- be performed.
-
- WWWWRRRR and WI contain the real and imaginary parts, respectively, of the
- eigenvalues. The eigenvalues are unordered except that complex conjugate
- pairs of values appear consecutively with the eigenvalue having the
- positive imaginary part first. If an error exit is made, the eigenvalues
- should be correct for indices IERR+1,...,N.
-
- IIIIEEEERRRRRRRR is set to Zero for normal return, J if the J-th
- eigenvalue has not been
- determined after a total of 30*N iterations. Questions and comments
- should be directed to B. S. Garbow, APPLIED MATHEMATICS DIVISION, ARGONNE
- NATIONAL LABORATORY
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-